A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization

نویسندگان

  • Md. Nasir
  • Swagatam Das
  • Dipankar Maity
  • Soumyadip Sengupta
  • Udit Halder
  • Ponnuthurai N. Suganthan
چکیده

The concept of particle swarms originated from the simulation of the social behavior commonly observed in animal kingdom and evolved into a very simple but efficient technique for optimization in recent past. Since its advent in 1995, the Particle Swarm Optimization (PSO) algorithm has attracted the attention of a lot of researchers all over the world resulting into a huge number of variants of the basic algorithm as well as many parameter selection/control strategies. PSO relies on the learning strategy of the individuals to guide its search direction. Traditionally, each particle utilizes its historical best experience as well as the global best experience of the whole swarm through linear summation. The Comprehensive Learning PSO (CLPSO) was proposed as a powerful variant of PSO that enhances the diversity of the population by encouraging each particle to learn from different particles on different dimensions, in the metaphor that the best particle, despite having the highest fitness, does not always offer a better value in every dimension. This paper presents a variant of single-objective PSO called Dynamic Neighborhood Learning Particle Swarm Optimizer (DNLPSO), which uses learning strategy whereby all other particles’ historical best information is used to update a particle’s velocity as in CLPSO. But in contrast to CLPSO, in DNLPSO, the exemplar particle is selected from a neighborhood. This strategy enables the learner particle to learn from the historical information of its neighborhood or sometimes from that of its own. Moreover, the neighborhoods are made dynamic in nature i.e. they are reformed after certain intervals. This helps the diversity of the swarm to be preserved in order to discourage premature convergence. Experiments were conducted on 16 numerical benchmarks in 10, 30 and 50 dimensions, a set of five constrained benchmarks and also on a practical engineering optimization problem concerning the spread-spectrum radar polyphase code design. The results demonstrate very competitive performance of DNLPSO while locating the global optimum on complicated and multimodal fitness landscapes when compared with five other recent variants of PSO. 2012 Published by Elsevier Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies

The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...

متن کامل

Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization

Optimization algorithms are proposed to tackle different complex problems in different areas. In this paper, we firstly put forward a new memetic evolutionary algorithm, named Monkey King Evolutionary (MKE) Algorithm, for global optimization. Then we make a deep analysis of three update schemes for the proposed algorithm. Finally we give an application of this algorithm to solve least gasoline ...

متن کامل

A hierarchical particle swarm optimizer with latin sampling based memetic algorithm for numerical optimization

Memetic algorithms, one type of algorithms inspired by nature, have been successfully applied to solve numerous optimization problems in diverse fields. In this paper, we propose a new memetic computing model, using a hierarchical particle swarm optimizer (HPSO) and latin hypercube sampling (LHS) method. In the bottom layer of hierarchical PSO, several swarms evolve in parallel to avoid being t...

متن کامل

Particle swarm optimisation of memory usage in embedded systems

In this paper, we propose a dynamic, non-dominated sorting, multiobjective particle-swarm-based optimizer, named Hierarchical Non-dominated Sorting Particle Swarm Optimizer (H-NSPSO), for memory usage optimization in embedded systems. It significantly reduces the computational complexity of others MultiObjective Particle Swarm Optimization (MOPSO) algorithms. Concretely, it first uses a fast no...

متن کامل

A Variable Neighborhood Particle Swarm Algorithm Based on the Visual of Artificial Fish

Inspired by the model of artificial fish school algorithm, a novel particle swarm optimizer with the increasing visual of artificial fish is presented after introducing the visual of artificial fish into particle swarm optimization. The neighborhood of each particle is dynamically changed through continually expand the visual of each particle. The local optimal strategy and the global optimal s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 209  شماره 

صفحات  -

تاریخ انتشار 2012